

ProTech Professional Technical Services, Inc.

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for

informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these
names generically

C
o
u
rs

e
 O

u
tl
in

e

Domain Driven Design and Event Storming

Course Summary

Description

Much of the software being developed or upgraded today is “mission critical,” an organization becomes
so dependent on their software infrastructure that when the software fails, the organization can no longer
function. However, when software become mission critical it also becomes very complex and difficult to
work with. The major contributing factor to the complexity of the mission critical systems is the complexity
of the real world business domain which the software automates. Studies on the failures of both IT
systems and projects conclude that the inability to manage domain complexity is the major root cause of
the failures.

Domain Driven Design (DDD) was introduced by Eric Evans as a methodology to enable developers to
create domain models of complex domains based on an intensive iterative study of the domain and
refinements of a domain model. DDD, which originally focused only on the static structures in the
domain, is complemented by Event Storming (ES) which integrates how the dynamic processes interact
with the domain structures by analyzing the events that can occur in the domain and the domain’s
responses to those events. The modern approach to DDD now incorporates the ES process as part of its
modeling cycle.

The course starts with a look at the complexity problem and the overall solution provided by the DDD-ES
approach. This is supplemented with an overview of domain modeling best practices from both a
structural and dynamic perspective. The basic model elements or interfaces are covered in detail –
factories, repositories, entities, aggregates, value objects etc. Covered in detail is the knowledge
distillation or crunching process, the core investigative technique of DDD-ES and how this process is
used to create robust and elegant models.

The course includes more recent work that was not part of the original formulations of DDD and ES such
as the process re-engineering aspects of the domain, the inversion of control design principle and other
patterns of implementation that have become part of the domain driven design approach since the
original Evans material was presented.. Also included is an overview of how other techniques like the
Stanford Design Process, Agile, DevOps, Lean Engineering and Agile testing integrate with the domain
driven design process.

Since the course deals with modeling, there will be a continuous modeling exercise that will be used to
illustrate all of the principles and concepts presented in the course

A fourth day is available as an add-on to the basic course which focuses on moving from design to code
and is intended for developers

Topics

 Complexity and Design

 Domains, Architectures, and Knowledge
Crunching

 Domains, Contexts, and Ubiquitous
Language

 Entities, Value Objects, and Aggregates

 Event Storming

 Factories, Repositories, and Events

 Services and Specifications

 Moving from Model to Design

 Re-engineering

ProTech Professional Technical Services, Inc.

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for

informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these
names generically

C
o
u
rs

e
 O

u
tl
in

e

Domain Driven Design and Event Storming

Course Summary (cont’d)

Audience

This course is targeted at developers, business analysts, and domain experts who need to work
collaboratively to build applications based on complex domains.

Prerequisites

A familiarity with data modeling or object oriented domain modeling is helpful, as well as an exposure to
program design using interfaces, although these are not strictly necessary.

Duration

Three days

ProTech Professional Technical Services, Inc.

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for

informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these
names generically

C
o
u
rs

e
 O

u
tl
in

e

 Domain Driven Design and Event Storming

Course Outline

I. Complexity and Design

A. Complexity – the motivating problem
B. Sources of complexity – domain, design

and environment
C. Overview of the DDD-ES approach
D. The DDD Quadrants
E. ES: processes, scenarios, events and

responses.
F. Architectural and Functional layers and

dependencies

II. Domains, Architectures, and Knowledge

Crunching
A. Domains and domain models
B. Knowledge crunching and distillation
C. Breakthrough iterations
D. Integration with Stanford Design process

and Lean technologies
E. Abstraction and Dependency Inversion

Principle
F. Types of complexity in homogeneous and

heterogeneous domains
G. Modeling Principles – Dynamic and Static

III. Domains, Contexts, and Ubiquitous

Language
A. Identifying sub-domains and why they

exist
B. Bounded contexts and modeling
C. Ubiquitous Language
D. Continuous Integration
E. Processes processes and events within

and across bounded contexts.

IV. Entities, Value Objects, and Aggregates

A. More modeling concepts
B. Entities and identifiers
C. Value objects
D. Aggregates
E. Aggregate invariants
F. Aggregate interfaces
G. Conceptual contours
H. Context maps and shared kernels

V. Event Storming

A. Scenarios, story mapping and data flows.
B. Commands, events, aggregates and read

models
C. Model, View Controller and related

architectures
D. Actions and responsibilities
E. Binding events and actions to aggregates

F. Alignment of structure and function

VI. Factories, Repositories, and Events

A. Object lifecycles
B. Factories, factory sites, and factory

interfaces
C. Processing invariants
D. Repositories, queries and repository

interfaces
E. Events – domain versus versus

application events
F. Modeling event processing with aggregate

states
G. Modeling reactive processes
H. Side-effect free functions
I. Stand-alone classes
J. Anti-corruption layer

VII. Services and Specifications

A. Services – when to use them
B. Inversion of Control and Dependency

Inversion
C. Specifications and business rules
D. Modules
E. Assertions
F. Closure of Operations
G. Server types

VIII. Moving from Model to Design

A. Implementation patterns for aggregates
B. Implementation patters for factories and

repositories
C. Implementation patterns for services and

specification
D. Implementing events and processes
E. implementing a layered architecture
F. Best practices for implementation

IX. Re-engineering

A. Exploratory testing and analysis
B. The problem of Legacy structures and

processes
C. Re-engineering the domain
D. Event storming to develop acceptance

tests
E. Test Driven Architectural and Functional

redesign
F. Risk analysis and cost benefit analysis
G. Using the Open-Close principle
H. Implementing design best practices using

DDD-ES

