
ProTech Professional Technical Services, Inc.

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other
companies and their products are for informational purposes only, and all trademarks are the properties of their respective companies. It is not the

intent of ProTech Professional Technical Services, Inc. to use any of these names generically.

C
o
u
rs

e
 O

u
tl
in

e

Agile Risk-Based Proactive Testing

Course Summary

Description

Agile development on the one hand emphasizes integrating especially automated testing with
development. On the other hand, though, Agile teams often lack key testing processes and important test
planning, design, execution, and management skills. Without them, testing can be neither effective nor
efficient. Agile’s narrowly-focused short iterations aggravate but also mask such weaknesses. Projects
benefit when cross-functional teams include skilled testing specialists and also when all members suitably
understand effective testing processes and techniques. This interactive course introduces the powerful
Proactive Testing methodology that enables you to do more effective testing in less time than traditional
reactive testing, while also helping overcome traditional user, manager, and developer resistance.
Applying special techniques that spot many of the highest yet ordinarily-overlooked risks, Proactive
Testing truly “puts Agile testing on steroids.” After a thorough grounding in Proactive Testing, concepts
are extended to Agile’s test-driven approaches. Participants practice each key concept/technique with a
real case fact situation.

Objectives
At the end of this course, students will learn:

 A structured Proactive Testing model of testing that benefits Agile and traditional life cycles.

 Ways testing actually can cut time, effort, and aggravation for users, developers, and managers.

 Low-overhead industry-accepted test plans, designs, and cases that aid effectiveness and
reliability.

 Multiple techniques/checklists to design more thorough tests and discover overlooked conditions.

 Analyzing risk and reusing testware to perform more of the important testing in less time.

 Practical ways to apply the concepts/techniques to short-iteration Agile test-driven development.

Topics

 How testing can cut effort & time

 Test planning value not busywork

 Detailed test planning

 White box (structural) testing

 Test design: both verb and noun

 Managing test execution

 Agile, user story fundamentals

 Requirements are requirements—

 Or maybe not

 Writing more suitable user stories

 Test-driven development

 User story acceptance tests

Audience

This course has been designed for developers, testing professionals, subject matter specialists,
managers, and others who need more effective testing in Agile or other projects.

Duration

Three Days

ProTech Professional Technical Services, Inc.

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other
companies and their products are for informational purposes only, and all trademarks are the properties of their respective companies. It is not the

intent of ProTech Professional Technical Services, Inc. to use any of these names generically.

C
o
u
rs

e
 O

u
tl
in

e

Agile Risk-Based Proactive Testing

Course Outline

I. How Testing Can Cut Effort & Time

A. Why Test? Critical Concepts

B. Testing For Correctness Vs. Testing
For Errors

C. Defect Injection, Detection, Ejection
Metrics

D. Reactive Testing—Out Of Time, But
Not Tests

E.

F. Agile, Test-Driven Unit And
Acceptance Tests

G. Uat, Cots Vs. Development/Technical
Tests

H. Cat-
Errors

I. V-Model And Objectives Of Each Test
Level

J. Dynamic Tests, Passive/Active Static
Review

K. Developer Vs. Independent Tester
Testing

L. Strategy—Create Fewer Errors, Catch
More

M. Test Activities That Save The
Developer’s Time

II. Test Planning Value Not Busywork

A. Proactive Vs. Reactive Risk Analysis

B. Identify Overlooked Large Risks, Test
Earlier

C. IEEE Standard For Test
Documentation

D. Master Test Plan, Scoping

E. Strategy Approach, Use Of
Automated Tools

F. Entry/Exit Criteria, Anticipating
Change, Trace

G. Exercise: Preventing Showstoppers

H. Risk-Based Way To Define Best Test
Units

I. Letting Testing Drive Development

J. Stomach Ache Metric; Agile?

III. Detailed Test Planning

A. IEEE Standard On Unit Testing

B. Functional (Black Box) Testing
Strategy

C. 3-Level Top-Down Test Planning And
Design

D. Exercise: Functionality Matrix

E. Use Cases, Revealing Overlooked
Conditions

F. Detailed Test Plan Technical
Document

IV. White Box (Structural) Testing

A. Structural (White Box) Degrees Of
Coverage

B. Flowgraphing Logic Paths

C. Applying Structural Paths To Business
Logic

D. Exercise: Defining Use Case Test
Coverage

V. Test Design: Both Verb And Noun

A. Exercise: Disciplined Brainstorming

B. Checklists Find More Overlooked
Conditions

C. Data Formats, Data And Process
Models

D. Business Rules, Decision Tables And
Trees

E. Equivalence Classes And Boundary
Values

F. Exploratory Tests Supplement Not
Substitute

G. Defect Isolation, Reproducibility,

H. Formal, Informal Test Design
Specifications

I. Exercise: Defining Reusable Test
Designs

J. Test Case Specifications Vs. Test
Data Values

K. Writing Test Cases, Script/Matrix

VI. Managing Test Execution

A. Test Environment, Automation,
Regression

B. Defect Isolation, Analysis
Reproducibility

C. Defect Reports That Prompt Suitable
Action

D. Projecting When Software Is Good
Enough

E. Exercise: Measuring Test
Effectiveness

ProTech Professional Technical Services, Inc.

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other
companies and their products are for informational purposes only, and all trademarks are the properties of their respective companies. It is not the

intent of ProTech Professional Technical Services, Inc. to use any of these names generically.

C
o
u
rs

e
 O

u
tl
in

e

Agile Risk-Based Proactive Testing

Course Outline

VII. Agile, User Story Fundamentals

A. Agile Manifesto’s Relevant Points

B. Characterization Of Traditional
Approaches

C. Agile’s Sprints And Backlogs
Alternative

D. Prioritizing And Allocating To
Backlogs/Sprint

E. Agile Vs. Traditional Project Team
Roles

F. User Story “As A <Role>…” (Card)

G. Invest User Story Guideline

H. Exercise: Write User Stories

I. User Story Acceptance Criteria
(Confirmation)

J. Given, When, Then Format

K. Exercise: Define Their Acceptance
Criteria

L. Exercise: Review Your User
Stories/Criteria

M. Right User Stories For Right
Acceptance Criteria

N. Sizing, Splitting And Grooming Stories

O. Exercise: Split/Groom Your User
Story

VIII. Requirements Are Requirements—

IX. Or Maybe Not

A. User Stories Are Backlog Items,
Features

B. Chicken And Egg Relation To Use
Cases

C. Business Vs. Product/System
Requirements

D. “Levels Model” Of Requirements

E. Other Mistaken Presumptions

F. Requirements Overview

G. Where User Stories Should Fit, May
Fit Instead

H. Product Owner And Business Analyst
Roles

I. Responsibility For Defining User
Stories

J. Who Defines Features, Tasks To
Create

K. (Conversation) Conundrum

L. Exercise: Write Business User Story

X. Writing More Suitable User Stories

A. Focus On Value

B. Users, Customers, And Stakeholders

C. Exercise: Identify Overlooked
Stakeholders

D. Problem Pyramid™ Tool To Find
Value

E. Exercise: Using The Problem
Pyramid™

F. Exercise: Write Business Value User
Story

G. Exercise: Identify Features For User
Story

H. Exercise: Design Code For Feature

XI. Test-Driven Development

A. Developer Writes Test-First Unit Tests

B. Automating Tests, Regression Testing

C. Applying Test Design Techniques

D. Exercise: Define Test-First Unit Tests

E. Exercise: Evaluate Unit Tests’
Adequacy

XII. User Story Acceptance Tests

A. User Story Acceptance Criteria, Tests

B. Differences From Test-First Unit Tests

C. Automating, Cucumber Limits And
Issues

D. Tests Help Define Requirements

E. Risks Of Relying On Tests As
Requirements

F. Suitability Of Using For Quality
Factors

G. Confirming Vs. Defining Requirements

H. Where Are Tests For Missed Criteria

I. Exercise: Write User Story
Acceptance Criteria

J. Exercise: Review Acceptance Criteria

K. Turning Criteria Into Tests, Issues

L. How Many Tests Are Really Needed,
Risk

M. Applying Test Design Techniques

N. Exercise: Write User Story
Acceptance Tests

O. Exercise: Review Acceptance Tests

P. Agile Executable Code Demos Vs.
Uat

Q. Testing That User Story Focus Misses

R. Managing Test-Driven Process

