

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for
informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these

names generically

"Charting the Course ...

... to Your Success!"

Java Test Driven Development with TestNG

Course Summary

Description

Test Driven Development (TDD) has become a standard best practice for developers, especially those working
in an Agile development environment. TDD is more than just automated unit testing, it is a team and individual
development discipline that, when followed correctly, increases productivity of both individual developers and
entire teams. From the programmer’s perspective, TDD has another benefit – it allows programmers to
eliminate the tedious tasks of debugging and reworking code so that programmers can focus on the creative
work of designing and writing code. It makes programming fun again.

The course integrates two primary learning streams.

The first is the how to effectively implement TDD in a production or development environment and integrating
TDD practices with other practices like software craftsmanship, agile design practices, continuous integration
and best practices in object oriented programming and Java development.

The second learning stream is an in depth and hands on deep dive into Java TDD tools such as mocking
libraries, matching libraries and the TestNG framework itself. TestNG (Test Next Generation) is a test
framework inspired by JUnit and NUnit but with additional features and functionality
The class is designed to be about 50% hands on labs and exercises, about 25% theory and 25% instructor led
hands on learning where students code along with the instructor.

Topics

 The TDD process - “red, green, refactor”

 Eliminating technical debt with TDD

 Why TDD works

 Integrating the TDD discipline into a
development process

 Using TDD to support programming and
design best practices

 Developing a TDD project using TestNG

 TestNG concepts, architecture and features

 Organizing and managing tests using
testng.xml

 Assertion libraries (hamcrest, etc.)

 Using Mocks effectively

 Mocking libraries (Mockito, JMockit,
EasyMock, etc.)

 How to developing good tests and test suites

 Best practices when using TDD and JUnit to
improve development

 Code smells and refactoring

 Using TDD to refactor code

 Migrating to TDD as a programming
discipline

Audience

This course is designed for Java programmers.

Prerequisites

Before taking this course, students should have a good knowledge of Java and have at least an intermediate
programming skill level.

Duration

Three days

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for
informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these

names generically

"Charting the Course ...

... to Your Success!"

Java Test Driven Development with TestNG

Course Outline

I. Java Test Driven Development

Introduction
A. The TDD process as a discipline
B. How TDD improves efficiency and

effectiveness of programming
C. Eliminating technical debt, debugging

and rework
D. Integrating TDD with best practices in

program design and coding
E. TDD as a a core Agile practice
F. The Agile testing quadrants
G. The importance of test automation
H. Refactoring: what it is and why we do

it

II. An Introduction to TestNG
A. TestNG architecture and functionality
B. The TDD process implemented with

TestNG
C. Runners, fixtures and test execution
D. Using the testing.xml file to run tests
E. TestNG assertions – how tests pass

and fail
F. TestNG annotations
G. Writing and validating a TestNG test
H. Introduction to matchers and mocks

III. TDD Best Practices I

A. Testing through interfaces
B. Command / Query segregation
C. Functional testing concepts
D. Relationship between good class

design and ease of testing
E. Understanding Unit testing –

component isolation
F. Planning the development to minimize

work
G. How to decide what test to add next
H. Errors, faults, failures and exceptions
I. TDD best practices
J. Common errors when implementing

TDD

IV. More JUnit
A. Design by contract
B. Writing tests for preconditions, post-

conditions and invariants
C. Testing exceptions with TestNG
D. Using testNH test fixtures effectively
E. Selective execution of tests and

grouping of tests
F. Ordering the addition of of tests into

TestNG
G. Differences between test errors and

test failures

V. Testing Concepts
A. Criteria for good testing: validity,

accuracy and reliability
B. Why our tests have to be correct
C. Common sources of test case errors
D. Systematic and algorithmic test case

development
E. Deriving test cases from acceptance

tests
F. Functional coverage measures
G. Determining optimal numbers of tests
H. Using test cases to identify

requirements and specification
problems

I. Dealing with valid, invalid and outlier
test cases

J. Combinatorial versus stateful testing

VI. Assertions and Predicates
A. Four generations of assertions: Java,

JUnit, Hamcrest and AssertJ
B. Using hamcrest to develop complex

assertion predicates
C. Using hamcrest to examine structures,

lists, etc
D. Writing complex predicates in AssertJ
E. Overview of hamcrest and AssertJ

features

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for
informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these

names generically

"Charting the Course ...

... to Your Success!"

Java Test Driven Development with TestNG

Course Outline (cont’d)

VII. Mocking and Mock Libraries
A. Mocks, stubs, drivers and component

unit testing
B. Implementing interfaces with a mock

object
C. Overview of mocking libraries:

EasyMock, Mockido, JMockit ec.
D. How mocking libraries work
E. Implementing and using mocks from a

mocking library
F. Designing and implementing a

mocking strategy

VIII. TDD Best Practices II
A. Organizing and maintaining the test

environment
B. Testing the test code
C. Developing tests and code design

together
D. Deciding intensive and

comprehensive should be
E. TDD implementation patterns
F. Metrics for TDD

IX. Refactoring
A. Refactoring as controlled code

changes
B. Using TDD to implement a refactoring
C. Code smells – driver for refactoring
D. Code refactoring versus design

refactoring
E. Refactoring to a design pattern
F. Using refactoring to reduce technical

debt
G. Refactoring best practices

X. Implementing TDD

A. Review of TDD best practices
B. Review of JUnit best practices
C. Planning a TDD project
D. Integrating TDD into a development

process
E. Integrating TDD with coding

excellence
F. The importance of metrics
G. Developing an implementation plan
H. Pitfalls, snares and traps to avoid

