

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for
informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these

names generically

"Charting the Course ...

... to Your Success!"

Go Test Driven Development

Course Summary

Description

Test Driven Development (TDD) has become a standard best practice for developers, especially those working in an
Agile development environment. TDD is more than just automated unit testing, it is a team and individual
development discipline which, when followed correctly, increases productivity of both individual developers and entire
teams. From the programmer’s perspective, TDD has another benefit – it allows programmers to eliminate the
tedious tasks of debugging and reworking code so that programmers can focus on the creative work of designing and
writing code. It makes programming fun again.

The course integrates two primary learning streams.

The first is the how to effectively implement TDD in a production or development environment and intel-grating TDD
practices with other practices like software craftsmanship, agile design practices, continuous integration and best
practices in program design and Go development.

The second learning stream is an in depth and hands on deep dive into Go TDD tools, starting with the standard Go
test framework but also including a number of useful TDD third party tools that are popular in the Golang community.

The class is designed to be about 50% hands on labs and exercises, about 25% theory and 25% instruct-tor led
hands on learning where students code along with the instructor.

Topics

 The TDD process - “red, green, refactor”

 Eliminating technical debt with TDD

 Why TDD works

 Integrating the TDD discipline into a
development process

 Using TDD to support programming and design
best practices

 Developing a TDD project using the Go test
framework

 Go test concepts, architecture and features

 Go assertions, using the testify package,
hamcrest, gocheck, etc

 The concepts of using mocks.

 Mocking in Go: libraries (testify, gomock) and
generators (counterfeit, minimock)

 How to developing good tests and test suites

 Best practices when using TDD to improve
development

 TDD and concurrency in Go

 Migrating to TDD as a programming discipline

Audience

This course is intended for Go programmers who have successfully completed ProTech’s “Introduction to Go
Programming for Developers” (PT20182) or have an equivalent level of Go knowledge and experience.

Prerequisites

This course is intended for Go programmers who have successfully completed ProTech’s “Introduction to Go
Programming for Developers” (PT20182) or have an equivalent level of Go knowledge and experience. Students
who do not have this prerequisite will find the course difficult to follow and the labs too fast pasted. Because the
course does not have time that can be allocated to doing additional Go remedial instruction, this prerequisite is
essential.

Duration

Three days

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for
informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these

names generically

"Charting the Course ...

... to Your Success!"

Go Test Driven Development

Course Outline

I. Go Test Driven Development

Introduction: The TDD process as a
discipline
A. How TDD improves efficiency and

effectiveness of programming
B. Eliminating technical debt, debugging

and rework
C. Integrating TDD with best practices in

program design and coding
D. TDD as a core Agile practice
E. The Agile testing quadrants
F. The importance of test automation
G. Refactoring: what it is and why we do

it

II. An Introduction to the Go test

framework
A. The Go testing package design and

architecture
B. The TDD process implemented with

Go test
C. Runners, fixtures test execution and

reporting
D. Tests versus benchmarks
E. The testing.T and testing.B structures
F. Go assertions
G. Test fixtures with TestMain()
H. Using subtests
I. Test coverage reporting
J. The “go test” options

III. TDD Best Practices I

A. Testing through interfaces and
function signatures

B. Command / Query segregation
C. Functional testing concepts
D. Relationship between good

component design and ease of testing
E. Understanding Unit testing –

component isolation
F. Planning the development to minimize

work
G. How to decide what test to add next
H. TDD best practices
I. Common errors when implementing

TDD

IV. More Go Testing
A. Design by contract
B. Writing tests for preconditions, post-

conditions and invariants
C. Testing for error correctness (e.g. if

the correct error is returned)
D. Selective execution of tests and

grouping of tests
E. Using gosuite for test setup and

teardown
F. Test coverage reporting

V. Testing Concepts

A. Criteria for good testing: validity,
accuracy and reliability

B. Why our tests have to be correct
C. Common sources of test case errors
D. Systematic and algorithmic test case

development
E. Deriving test cases from acceptance

tests
F. Functional coverage measures
G. Determining optimal numbers of tests
H. Using test cases to identify

requirements and specification
problems

I. Dealing with valid, invalid and outlier
test cases

J. Combinatorial versus stateful testing

VI. Assertions and Predicates

A. Checking versus testing conditions
B. Writing assertion with the Assertions

package
C. Writing assertions with testify and

hamcrest
D. Using assertions to examine

structures, lists, etc
E. Writing complex assertion predicates
F. Comparison of different assertion

packages

Due to the nature of this material, this document refers to numerous hardware and software products by their trade names. References to other companies and their products are for
informational purposes only, and all trademarks are the properties of their respective companies. It is not the intent of ProTech Professional Technical Services, Inc. to use any of these

names generically

"Charting the Course ...

... to Your Success!"

Go Test Driven Development

Course Outline (cont’d)

VII. Mocking and Mock Libraries

A. Mocks, stubs, drivers and component
unit testing

B. Implementing interfaces with a mock
object

C. Overview of mocking libraries:
stretchr/mock, gomock, etc.

D. How mocking libraries work
E. Generating mocks for interfaces using

minimock
F. Implementing and using mocks from a

mocking library
G. Designing and implementing a

mocking strategy

VIII. TDD Best Practices II

A. Organizing and maintaining the test
environment

B. Testing the test code
C. Developing tests and code design

together
D. Deciding intensive and

comprehensive should be
E. TDD implementation patterns
F. Metrics for TDD

IX. Refactoring

A. Refactoring as controlled code
changes

B. Using TDD to implement a refactoring
C. Code smells – driver for refactoring
D. Code refactoring versus design

refactoring
E. Refactoring to a design pattern
F. Using refactoring to reduce technical

debt
G. Refactoring best practices

X. Using TDD to Develop Concurrent
Code
A. The challenges of testing concurrent

code
B. Adapting the TDD approach to

concurrent applications
C. The “well-defined” and “well-designed”

requirements for TDD
D. A model template for developing

concurrent code with TDD

XI. Implementing TDD

A. Review of TDD best practices
B. Review of Go testing best practices
C. Planning a TDD project
D. Integrating TDD into a development

process
E. Integrating TDD with coding

excellence
F. The importance of tracking metrics
G. Developing an implementation plan
H. Pitfalls, snares and traps to avoid

